вторник, 29 ноября 2016 г.

Сетевое моделирование с Айвикой

Давно присматриваюсь к сетевому моделированию (англ. network simulation). Нахожу, что многое можно моделировать с помощью моей Айвики уже сейчас, в том числе, моделировать распределенно на кластере или параллельно на суперкомпьютере.

Основная идея такая. Обычно говорят о портах - источниках данных. В Айвике источники могут быть как активными, так и пассивными. Активный источник сам проталкивает данные дальше для обработки. Это у меня тип Signal a (или Signal m a в обобщенной версии). Тогда каналом будет просто преобразование одного сигнала в другой. Модуль будет функцией, отображающей входные сигналы на выходные.

Сигналы - это фактически приложение идеи шаблона IObservable из .NET к имитационному моделированию. Сигналы можно комбинировать, соединять друг с другом. Еще их можно задерживать по времени через очередь событий.

Похоже, что сигналы могут подойти для моделирования многих компьютерных сетей, но это пока предположение.

Пассивные источники данных у меня в Айвике представлены потоками Stream a (или Stream m a в обобщенной версии). Их нужно запрашивать, чтобы вытянуть из них данные. Их можно распараллеливать для обработки, а потом снова сливать в один поток.

Потоки являются обобщением собственно самой идеи потока из функционального программирования, но примененное к имитационному моделированию. Так, потоки можно задерживать по времени.

Такие потоки подходят для моделирования сетей массового обслуживания. Поэтому я часто называю их просто потоками транзактов, потому что это они самые и есть.

Любопытно, что активные сигналы и пассивные потоки могут быть преобразованы к друг другу тривиальным образом, используя очереди, если необходимо.


В общем, у меня есть достаточно общий аппарат, который может быть применен к широкому классу задач на мой взгляд. Более того, используя модуль aivika-distributed, такие задачи можно обсчитывать распределенно на кластере или параллельно в случае необходимости. Как раз на днях значительно улучшил этот модуль.

Распределенное моделирование c Айвикой

Обновил версию aivika-distributed, которую можно использовать для распределенного и параллельного моделирования. Реализована оптимистичная стратегия по методу Time Warp. В этой версии значительно улучшена синхронизация глобального времени. Используется алгоритм Самади. В общем, если соединения между узлами достаточно надежные, то распределенная имитация должна вполне хорошо работать.

Чтобы использовать эту версию, достаточно вооружиться документацией PDF по базовой версии Айвики. Здесь все то же самое, т.е. события, процессы, ресурсы, сигналы, потоки транзактов, все это применимо и к распределенной версии. Только типы будут выглядеть по другому. Там, где был Event a, станет Event DIO a и т.д.  Последний Event - это фактически монадный трансформер, но я решил не добавлять к его названию букву T, как это обычно делают, а сохранить все названия из базовой версии. Тому были причины.

Итак, вооружившись документацией по базовой версии Айвики, можно создавать имитационные модели. Распределенность добавляется через посылку и прием сообщений вот из этого модуля Message

Собственно, все! В следующем сообщении напишу, как это можно применить к сетевому моделированию (англ. network simulation)